Tetrahedron Letters No. 31, pp 2685 - 2688, 1974. Pergamon Press. Printed in Great Britain.

CORRELATION BETWEEN RADICAL REACTIVITY AND QUANTUM CHEMICAL INDICES OF SUBSTITUTED PHENOLS

I. Lukovits, J. Kardos and M. Simonyi^{*}

Central Research Institute for Chemistry of the Hungarian Academy of Sciences H-1025 Budapest, Pusztaszeri ut 59-67, Hungary.

(Received in UK 30 May 1974; accepted for publication 19 June 1974)

Polyvinyl acetate radicals abstract hydrogen atom from the 0-H group of phenols¹:

The reactivities, k, relative to that of unsubstituted phenol, k_0 , can be correlated with electrophilic substituent constants^{2b,3}. For 18 phenol derivatives (Table 1) the equation is (Fig.1.a):

$$\log k/k_{0} = -1,276 \sum_{(\pm 0,044)} (1)$$

significantly differing from the earlier Hammett equation^{2b} ($\P = -1,52$; Fig.1.b). The correlation coefficient, R, for Eq.(1) is 0,991. We have tried to find correlation between reactivities and quantum chemical indices too. The all-valence electron Extended Hückel method^{4,5} has been applied for the computations. The computed atomic indices are : the net population⁶, n, the free valence⁷, F, the frontier orbital density⁸, f, the charge density⁶, q, the nucleophilic- and radical delocalizability⁷, S^N and S^R, the frontier orbital density in the first excited state and the squares of coefficients of the lowest unoccupied molecular orbital. The computer program⁹ first selected the charge density, q_{C_1} , of the ring atom C_4 . The regression equation is:

The correlation coefficient, R, for Eq.(2) is 0,904. Next variable to enter the regression equation was the total energy of the molecule divided by the number of valence electrons, E_n :

2685

No. 31

$$\log k/k_0 = -13,638 \quad q_0 = -0,233 \quad E_n + 4,627 \quad (3)$$

The correlation coefficient, R, for Eq.(3) is 0,356. The measured and estimated values of log k/k_a for 18 substituted phenols are summarized in Table 1.

Table 1 Measured and Estimated Reactivities of 18 substituted Phenols Towards Polyvinyl Acetate Radical Estimated values of log k/k No. Molecule Ref. log k/k Eq.(1) Eq.(2)Eq.(3) 1 Phenol 2a 0,0 0,228 0,355 0,231 2 2-methylphenol 2Ъ 0,447 0,625 1,080 0,851 3 2,6-dimethylphenol 2Ъ 1,183 1,022 1,801 1,486 1,848 4 2,4,6-trimethylphenol 1,447 1,419 2,223 28 5 4-methylphenol 2Ъ 0.549 0,625 0,791 0,577 6 2,4-dimethylphenol 2ъ 1,106 1,022 1,509 1,208 7 3-methylphenol 0.449 0.312 0.298 0.108 2Ъ 0,239 8 3.5-dimethylphenol 2Ъ 0,315 0,397 0,001 2,3,5-trimethylphenol 0,727 0,793 0,957 0,644 9 2Ъ 10 Hydroquinone (HQ) 2Ъ 1,415 1,402 0,900 1,107 0,914 0,928 11 HQ monoethyl ether 2Ъ 1,302 1,221 -0,477 12 p-hydroxybenzaldehyde 2Ъ -0,387 -0,796 -0,576 13 Pyrocatechol 2Ъ 1,660 1,402 1,267 1,455 14 Resorcinol 2ъ 0,195 0,168 0,234 0,473 15 Phloroglucinol 2ъ 0,125 0,108 0,098 0,634 2,682 16 Pyrogallol 2**a** 2,576 2,222 2,652 2,444 17 Durohydroquinone 2a 2,364 2,173 1,999 18 5-hydroxypyrogallol 11 3,478 3,750 2,780 3,422 0,991 0,904 0,956 R:

From these significant correlations¹⁰ the following conclusions can be drawn: -the hydrogen atom donating ability of phenols decreases as the positive charge on atom C_1 increases;

- it seems reasonable to assume correlation between the sum of electrophilic substituent constants and charge density on ring atom C_A ;
- in spite of the high correlation coefficient of Eq.(1) the estimated value of log k/k_0 for the molecule 5-hydroxypyrogallol exceeds significantly the experimental value¹². The set of rate constants covers a broad range of 4 orders of magnitude and log k/k_0 is a definitely curved function of electrophilic substituent constants (Fig.1.). The earlier Hammett equation ^{2b} covered a narrower range, hence the value of \P differed from that of Eq.(1).

We emphasize that even the high correlation coefficients (e.g., 0,991) cannot guarantee the linearity of experimentally found correlations.

REFERENCES and FOOTNOTES

- 1. M. Simonyi, F. Tüdős: Advances in Physical Organic Chemistry, 9 127 (1971).
- 2a. Remeasured values: to be published
- 2b. M. Simonyi, F. Tüdős, J. Pospišil: Eur. Polymer J., 3 101 (1967)
- 3. H.C. Brown, Y. Okamoto: J. Am. Chem. Soc., 80 4979 (1958)
- 4. R. Hoffmann: <u>J. Chem. Phys</u>., <u>39</u> 1397 (1963)
- 5. The cartesian coordinates were computed using the data of J.A. Pople and M. Gordon (J. Am. Chem. Soc., <u>89</u> 4253 /1967/). The ionization potentials were taken from H. Basch, A. Viste and H. Gray (<u>Theoret. Chim. Acta /Berlin</u>/ <u>3</u> 458 /1965/).
- 6. R.S. Mulliken: J. Chem. Phys., 23 1833 (1955)
- 7. This index has been redefined for the Extended Hückel method, see: I. Lukovits, G. Biczó, I. Pataki: Conference on Chemical Structure--Biological Activity Relationships: Quantitative Approaches, held in Prague, June 27-29, 1973.
- 8. K. Fukui, T. Yonezawa, Ch. Nagata: Bull. Chem. Soc. Japan, 27 423 (1954)
- 9. UCLA Scientific Programs: BMD02R stepwise regression, January 10, 1969
- 10. The computed significance level for testing the null hypothesis of $\mathbf{Q}_{\text{CORR}} = 0$ (S.S. Wilks: Mathematical Statistics, John Wiley and Sons

Inc., New York-London (1962) p. 593) does not depend on the total number 1 of the variables screened for possible correlation with the dependent variable (J.G. Topliss, R.J. Costello: J. Med. Chem., 15 1066 /1962/). If k variables are selected by the multiple stepwise regression technique, the significance level P must be multiplied by $\binom{1}{k}$. Teking into account that 69 different atomic and molecular quantum chemical indices have been considered Eq.(2) and Eq.(3) were significant at a level of P< 0,001.

- 11. J. Kardos, M. Simonyi: to be published.
- 12. G.W. Snedecor, W.G. Cochran: Statistical Methods, The Iowa State University Press Ames, Iowa, U.S.A., Sixth ed. (1972) p. 157.

Fig. 1. Correlation according to Eq.1.