CORRELATION BETWEEN RADICAL REACTIVITY AND QUANTUM CHEMICAL INDICES OF SUBSTITUTED PHENOIS

I. Iukovits, J. Kardos and M. Simonyi*
Central Research Institute for Chemistry of the Hungarian Academy of Sciences H-1025 Budapest, Pusztaszeri ut 59-67, Hungary. (Received in UK 30 May 1974; accepted for pablication 19 June 1974)

Polyvinyl acetate radicals abstract hydrogen atom from the $0 \rightarrow H$ group of phenols ${ }^{1}$

$$
\mathrm{R}^{\bullet}+\mathrm{Y}-\mathrm{OH} \xrightarrow{\mathrm{k}} \mathrm{R}-\mathrm{H}+\mathrm{Y}-\mathrm{O}^{\circ}
$$

The reactivities, k, relative to that of unsubstituted phenol, k_{0}, can be correlated with electrophilic substituent constants ${ }^{2 b}, 3$. For 18 phenol derivatives (Table 1) the equation is (Fig.1.a):

$$
\begin{equation*}
\log \mathrm{k} / \mathrm{k}_{0}=\underset{\left(-1,276 \sum 0,044\right)}{\infty} \sigma^{+}+0,228 \tag{1}
\end{equation*}
$$

significantly differing from the earlier Hammett equation ${ }^{2 b}$ ($\mathcal{F}=-1,52$; Fig.1.b). The correlation coefficient, R, for Eq.(1) is 0,991. We have tried to find correlation between reactivities and quantum chemical indices too. The all-valence electron Extended Hückel method ${ }^{4}, 5$ has been applied for the computations. The computed atomic indices are : the net population, ${ }^{6} n$, the free valence, F, the frontier orbital density; ${ }^{8} f$, the charge density; q, the nucleophilic- and radical delocalizability, S^{N} and s^{R}, the frontier orbital density in the first excited state and the squares of cuetficients of the lowest unoccupied molecular orbital. The computer program ${ }^{9}$ first selected the charge density, $q_{C_{1}}$, of the ring atom C_{1}. The regression equation is:

$$
\log k / k_{0}=\left(\begin{array}{c}
-14,339 \tag{2}\\
(1,693) \\
q_{1}
\end{array}+9,485\right.
$$

The correlation coefficient, R, for Eq. (2) is 0,904. Next variable to enter the regression equation was the total energy of the molecule divided by the number of valence electrons, E_{n} :

$$
\begin{equation*}
10 g \mathrm{k} / k_{0}=\left(-13,638, q_{1},\left(\pm 0,233, E_{n}+4,627\right.\right. \tag{3}
\end{equation*}
$$

The correlation coefficient, R; for Eq. (3) is 0,756 . The measured and eatimated values of $\log k / k_{0}$ for 18 substituted phenols are summarized in Table 1.

Table 1
Measured and Estimated Reactivities of 18 substituted Phenols Towards Polyvinyl

Acetate Radical

No.	Molecule	Ref.	$\log k / k_{0}$	Estimated Eq.(1)	values of Eq. (2)	$\begin{gathered} \log k / k_{0} \\ \operatorname{lq}_{0}(3) \end{gathered}$
1	Phenol	2 a	0,0	0,228	0,355	0,231
2	2-methylphenol	2b	0,447	0,625	1,080	0,851
3	2,6-dimethylphenol	2b	1,183	1,022	1,801	1,486
4	2,4,6-trimethylphenol	2 a	1,447	1,419	2,223	1,848
5	4-methylphenol	2 b	0,549	0,625	0,791	0,577
6	2,4-dimethylphenol	2 b	1,106	1,022	1,509	1,208
7	3-me thylphenol	$2 b$	0,449	0,312	0,298	0,108
8	3,5-dimethylphenol	2 b	0,315	0,397	0,239	0,001
9	2,3,5-trimethylphenol	2b	0,727	0,793	0,957	0,644
10	Hydroquinone (HQ)	2 b	1,415	1,402	0,900	1,107
11	HQ monoethyl ether	2 b	1,302	1,221	0,914	0,928
12	p-hydroxybenzaldehyde	2b	-0,477	-0,387	-0,796	-0,576
13	Pyrocatechol	2 b	1,660	1,402	1,267	1,455
14	Resorcinol	2b	0,195	0,168	0,234	0,473
15	Phloroglucinol	2b	0,125	0,108	0,098	0,634
16	Pyrogallol	2a	2,682	2,576	2,222	2,652
17	Durohydroquinone	2 a	2,444	2,364	2,173	1,999
18	5-hydroxypyrogallol	11	3.478	3.750	2.780	3,422
			R:	0,991	0,904	0,956

From these significant correlations ${ }^{10}$ the following conclusions can be drawne -the hydrogen atom donating ability of phenols decreases as the positive charge on atom C_{1} increases;

- it seems reasonable to assume correlation between the sum of electrophilic substituent constants and charge density on ring atom C_{1};
- in spite of the high correlation coefficient of Eq. (1) the estimated value of $\log \mathrm{k} / \mathrm{k}_{0}$ for the molecule 5-hydroxypyrogallol exceeds significantly the experimental value ${ }^{12}$. The set of rate constants covers a broad range of 4 orders of magnitude and $\log k / k_{0}$ is a definitely curved function of electrophilic substituent constants (Fig.1.). The earlier Hamett equation ${ }^{2 b}$ covered a narrower range, hence the value of \mathcal{G} differed from that of Eq.(1).

We emphasize that even the high correlation coefficients (e.g., 0,991) cannot guarantee the linearity of experimentally found correlations.

REFTERENCES and FOOTNOTES

1. M. Simonyi, F. Tüdös: Advances in Physical Organic Chemistry, 2127 (1971).

2a. Remeasured values: to be published
2b. M. Simonyi, F. Tüdõs, J. Pospißil: Eur. Polymer J., 2101 (1967)
3. H.C. Brown, Y. Okamoto: J. Am. Chem. Soce, 804979 (1958)
4. R. Hoffmann: J. Chem. Phys., 391397 (1963)
5. The cartesian coordinates were computed using the data of J.A. Pople and M. Gordon (J. Am. Chem. Soc. $894253 / 1967 /$).

The lonization potentials were taken from H. Basch, A. Viste and H. Gray (Theoret. Chim. Acta/Berlin/ $2458 / 1965 /$).
6. R.S. Mulliken: J. Chem. Phys., 231833 (1955)
7. This index has been redefined for the Extended Hückel method, see: I. Lukovits, G. Biczo, I. Pataki: Conference on Chemical Structure--Biological Activity Relationships: Quantitative Approaches, held in Prague, June 27-29, 1973.
8. K. Fukui, T. Yonezawa, Ch. Nagata: Bull. Chem, Soc. Japan, 2 , 423 (1954)
Y. UCLA Scientific Programs: BMDO2R stepwise regression, January 10, 1969
10. The computed significance level for testing the null hypothesis of $\rho_{\text {CORR }}=0$ (S.S. Wilks: Mathematical Statistics, John Wiley and Sons

Inc., New York-London (1962) p. 593) does not depend on the total number 1 of the variables screened for possible correlation with the dependent variable (J.G. Topliss, R.J. Costello: J. Med. Chem., 151066 /1962/). If k variables are selected by the multiple stepwise regression technique, the significance level P must be multiplied by $\binom{1}{k}$. Teking into account that 69 different atomic and molecular quantum chemical indices have been considered Eq.(2) and Eq.(3) were significant at a level of $P<0,001$.
11. J. Kardos, M. Simonyi: to be published.
12. G.W. Snedecor, W.G. Cochran: Statistical Methods, The Iowa State University Press Ames, Iowa, U.S.A., Sixth ed. (1972) p. 157.

Fig. 1. Correlation according to Eq.1.

